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Abstract 0 The kinetics of the hydronium-ion-catalyzed hydrolysis 
of the ketal group in dexoxadrol hydrochloride [d( +)-2,tdiphenyl- 
4-(2'-piperidyl)-l,3-dioxolane hydrochloride], an orally active an- 
algesic agent, were determined as functions of acid concentration, 
ionic strength ( p ) ,  and temperature. Pseudo-first-order kinetics 
were observed. Specific reaction rate constants increased with in- 
creasing p ;  log k'/[H +] was linearly related to 4; at p < 0.03. The 
energy (A,!?.,), enthalpy ( A H $ ) ,  and entropy ( A S )  of activation were 
16.8 kcal./mole, 16.2 kcal./mole, and - 18.8 e.u., respectively. The 
rate of dexoxadrol hydrolysis was about 2% of that reported in the 
literature for 2,2-diphenyl-l,3-dioxolane, indicating a marked 
retardation due to the protonated piperidyl moiety. For a 60-min. 
residence time at pH 2.0 in the stomach, it was estimated that more 
than 91 % of orally ingested dexoxadrol would remain intact. 
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Dexoxadrol hydrochloride [d(+)-2,2-diphenyl-4-(2'- 
piperidyl)-l,3-dioxolane hydrochloride, I]' is a potent, 
orally active analgesic agent in man (1-4). The synthesis 
(5) ,  physicochemical properties (6),  and pharmacology 
(7-9) of I were reported previously. The known in- 
stability of ketals in  acid solution made it important 
to determine the extent of possible degradation of orally 
administered I in  the stomach. Therefore, the kinetics 
of the acid-catalyzed hydrolysis of I were determined 
and are the subject of this report. 

EXPERIMENTAL 

Acid hydrolysis of 1 yields /-2-(2-piperidyl)-l,2ethanediol (11) 
(10) and benzophenone (Ill). Production of I11 was confirmed in 
the present study by: (a) the UV spectra of reaction mixtures at 
completion of hydrolysis which were identical to the spectrum of 
Ill, and (b)  TLC of a chloroform extract of the reaction mixture 
which showed only one UV-absorbing product, identical to 111 
[TLC used silica gel G and the plates were developed with isooctane- 
chloroform(80:35), Rf -0.31. 

In the kinetic studies, aqueous solutions of I and of hydrochloric 
acid were preequilibrated to the desired temperature and rapidly 
mixed to yield the final concentrations shown in Table I. Each reac- 
tion mixture was placed in a UV spectrophotometer equipped with 
a constant-temperature cell compartment. Absorbances ( A  were 
determined at appropriate times at 247 nm., the absorption max- 
imum of 111 (c = 11,570), until no further absorbance increases 
occurred (A=). Pseudo-first-order reaction rate constants, k', were 

I 

1 Dexoxadrol hydrochloridc has also been referred to in the literature 
as U-22,559A (The Upjohn Co.) and CL-91 I-C (Cutter Laboratories). 
USAN chemical name is (+)-2-(2.2-diphcnyl-l.3-dioxolan-4-yl)p~per- 
idine hydrochloride. 

obtained from the slopes of plots of log ( A ,  - A f )  cersus time. The 
analytical wavelength chosen was highly sensitive to the production 
of 111, since neither 1 ( h a ,  t = 10,700; Xa47. t < 300) nor I1 absorbs 
significantly at 247 nm. Based on observed A, values and the molar 
absorptivity of 111, determined under the same conditions, hy- 
drolysis of I was complete (mean yield of 111 in all studies at 37" was 
102.7%). 

RESULTS AND DISCUSSION 

The generally accepted mechanism for the acid-catalyzed hydrol- 
ysis of acetals and ketals involves a rapid protonation of the sub- 
strate molecule followed by a unimolecular rate-determining cte- 
composition to an alcohol and a resonance-stabilized carbonium 
ion (1 1, 12, and references cited therein). Thus, the reaction should 
show first-order dependence on the acetal or ketal and hydronium 
ion. 

In the present study, plots of log ( A ,  - At)  uersus time were 
strictly linear, confirming first-order dependence on I (Fig. 1). 
Pseudo-first-order reaction rate constants, k', obtained from the 
slopes of these plots are shown in Table I along with the result- 
ing values of k '/[H+]. Hydronium-ion concentrations were con- 
verted to activities by interpolation of the data of Harned and 
Owen (1 3) and were used to calculate the specific reaction rate con- 
stants, k" - (Table I). 

Inspection of the data shows that k'/[H+] and k ~ +  increased with 
acid concentration and, therefore, with ionic strength (p) ,  since the 
latter was permitted to vary with the acid concentration. For hy- 
drolysis of a neutral species, k~ + should be essentially independent 
of 1.1. However, the pKa of I is approximately 8.9 (6). As a conse- 
quence, I was completely in the cationic form in the systems studied, 
and the hydronium-ioncatalyzed hydrolysis involved a reaction 
between like-charged ions. In such a case, an increase in the rate 
constant with increasing p would be predicted, with log k'/[H+] 
linearly related to <p at low values for p (14). To test this relation- 
ship for the present system, linear least-squares regression of log 
k'/[H+] cersus 4ji (for p 5 0.03) was conducted with predetermined 
theoretical slopes of 1.00, 0.97, and 0.93 at 30, 37, and 44", respec- 
tively (14). The resulting curves (Fig. 2) provided convincing evi- 
dence for the predicted effects of p on the rate constants. Accord- 
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Figure I-Pseudo-first-order reaction rate curces .for dexoxadrol 
hydrolysis af 44 '. 
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Table I-Reaction Conditions and Kinetic Constants for Dexoxadrol Hydrolysis 

- 

- 

~~~ ~ ~~ ~ 

Dexoxadrol, Hydrochloric k'/[H+l, k u e ,  M-l k3, 
Temperature M X los Acid, M X 10' k', sec.-l M-1 Sec.-1 x 103 Sec.-1 x 10' M-1 sec.-l x 101 

30 ' 8.67 0.60 5 .90  x 10-8 0.983 1.07 0.818 
30" 8.67 1.20 1.28 x 1.07 1.19 
30" 8.67 3.00 3.68 X 1W6 1.20 1.41 

1.0 

c 
0 . 5 3  

+ 
M - 
W 

- 0  

37 
37 .a 
37 
37 .a 
37 a 
'170 

8.67 
8.67 
9.26 
8.67 
9.26 
9.26 -. 

37 14.46 
37 14.46 
37 a 8.67 
37 8.67 
37 8.67 
37 8.67 _ .  
37 a 

37" 
37 a 

44" 
44" 
44" 

8.67 
8.67 
84.67 

0.15 
0.60 
0.60 
1.20 
1.20 
3.00 

2.38 X lo-' 
1 .I7 X IO-5 
~ . . . , . . - 
1.14 x lo-' 
2.58 x 
2.45 X l W 5  
6.80 x 

3.00 6.77 X 
3.00 6.70 x 
3 .oo 7.37 x 10-6 
4.80 1.17 x 10-4 
4.80 1.15 X lo-' 
7.20 1.80 X 1W' 
7.20 
9.60 
9.60 

8.86 0.60 
8.86 1 .20 

.8.86 3.00 

1.87 X 10-4 
2.65 X 10-4 
2.60 x 10-4 
2.07 X 1WS 
4.26 x 
1.10 x 10-4 

1.59 
1.95 
1.90 
2.15 
2.04 
2.27 
2.26 
2.23 
2.46 
2.44 
2.40 
2.50 
2 . G  
2.76 
2.71 

1.70 
2.13 
2.07 
2.41 
2.29 
2.66 
2.64 
2.62 
2.88 
2.94 
2.89 
3.09 
3.21 
3.48 
3.41 

1.59 

3.45 3.76 2.80 
3.55 3.98 
3.97 4.67 

0 kH+ = k'/an i. *Intercept from log k ' / [ H + ]  cersus ~ ' j i  for fi 5 0.03 (Fig. 2). 

ingly, k ,  (specific reaction rate constant at infinite dilution) was ob- 
tained from the intercept of each curve in Fig. 2 and is shown in 
Table 1. 

Parameters of activation for the hydrolysis of I were determined 
from k ,  at 30, 37, and 44" and appropriate linear regressions (Fig. 
3). Similar determinations were made utilizing krt - values obtained 
at the threc temperatures in 0.006, 0.012, and 0.030 M HCI solu- 
tions. From the summary in Table 11, it may be seen that the classical 
Arrhenius activation energy (AE.) is in good agreement with the 
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Figure 2--Linear leusf-squures regression of log k'l[Hi] versus 4; 
with predetermined theoreticul slvpes. 

value of 17.2 kcal./rnole reported by Ceder (15) for the hydrolysis 
of 2,2-diphenyl-1,3-dioxolane under similar conditions. The en- 
thalpy of activation (AHf) is somewhat larger than that reported 
by De Wolfe et ul. (16) for the hydrolysis of 2,2-diphenyl-1,3- 
dioxolane in 30% dioxane ( A H 1  = 14.6 kcal./mole). Fife and Hago- 
pian ( I  2) suggested that steric inhibition of resonance in the incipient 
carbonium ion should make AH$ more positive. The differences in 
AH$ may, therefore, reHect such an inhibition by the piperidyl 
moiety present in I. The entropy of activation (ASS) is considerably 
more negative than values reported for the hydrolysis of 2,2-di- 
phenyl-1,3-dioxolane in 3 0 z  dioxane (ASS = -8.3 e.u.) (16) and 
for a series of 2-phenyl-2-alkyl-l,3-dioxolanes in 50% dioxane 
(ASS = -8.6 to -8.9 e.u.) (12). Although the magnitude of ASS 
is typical of those observed for bimolecular reactions (17), there is 
no reason to  conclude that the mechanism of reaction for I differs 
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Figure 3-Lineur least-squares regression of log ko versus 1/T (0) 
undlog (ko/T) versus I/T (0). 
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Table II-Activation Parameters for Dexoxadrol Hydrolysis REFERENCES 

Basis for AE.7 AH$, 
Calculation kcal./mole kcal./mole ASS, e.u. 

ko 16.9 f 0.6 16.3 f 0.6 -19.1 f 1.9 
kk+,0 ,006MHCl  17.2f0.5 16.6f0.5 -17.3f1.7 
ka+,O.O12MHCI 16.6f 1.0 15.9f 1.0 -19.3f3.2 
kn+,O.O30MHCl 16.4 f 0.8 15.8 f 0.8 -19.4 f 2.7 
Mean 16.8 f 0.8 16.2 f 0.8 -18.8 f 2.5 

from that generally accepted for ketal hydrolysis. Rather, it appears 
that I represents a case where steric hindrance in the transition state 
produces an increase in AH? and a decrease in ASS ( 17). 

The data of De Wolfe er at. (16) allow a comparison of the 
hydrolysis rates for I and 2,2-diphenyl-l,3-dioxolane. These in- 
vestigators found kH + = 7.50 X M-’ set.-' for the latter com- 
pound at 30” (0.0197 M HCl in 1.3% dioxane-98.7% water). In- 
terpolation of the data for I from Fig. 2 gave k n +  = 1.29 X 
M - l  sec.-l at 30” (0.0197 M HCI in water). Presence of the proto- 
nated piperidyl group in I, therefore, produced a greater than 98% 
reduction in hydrolysis rate, reflecting the less favorable entropy of 
activation. 
De Wolfe er a/ .  (16) found that hydrolysis of a number of benzo- 

phenone ketals was susceptible to general acid catalysis. The 
catalytic constants for acids other than the hydronium ion were 
small but significant. For example, dichloroacetic acid (HA) cata- 
lyzed the hydrolysis of 2,2-diphenyl-1,3-dioxolane (30”, 20% di- 
oxane) such that k H + / k H A  = 40. No attempt was made in the 
present studies to determine the role of general acid catalysis in the 
hydrolysis of I. However, it may be concluded from the data in 
Table 1 (37”, 0.03 M HCl) that the protonated substrate (a Bronsted 
acid) did not make a significant catalytic contribution to its own 
hydrolysis, since observed rate constants were independent of 
initial I concentration 

Oral doses of I in man have ranged from 10 to a maximum of 150 
mg. (1-4). Since the solubility of I is high (11.66 mg./ml. at 23”) (a), 
rapid and complete dissolution should occur in the stomach. Gas- 
tric pH and emptying times vary widely. To provide a reasonable 
estimate of the stability of I during its transit through the stomach, a 
pH of 2.0 (corresponding to the data for 0.012 M HCl in Table I) 
and a residence time of 60 min. (approximately three half-lives for 
the stomach emptying process) (18) were assumed. Under those con- 
ditions, more than 91 % of orally ingested I would survive hydrolysis. 
This estimate is consistent with the high order of oral activity ob- 
served in clinical studies. 
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